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Analysis of Electromagnetic Interaction with Ships
on the Ocean Surface

Jin Au Kong
Massachusetts Institute of Technology
Cambridge, MA 02139

1. Research Objective

The objective of this research project has been to develop electromagnetic models for
three-dimensional (3-D) objects above a rough surface, analyze and predict their scattering
responses, determine dominant wave interaction mechanisms, investigate the origins of
these scattering features, and provide physical interpretation for both analysis and
synthesis of the response.

2. Background

Electromagnetic scattering from surface ships is an important subject of study for the
Navy. For all practical purposes, the main concerns are the identification from radar
signatures and reduction of radar signatures by better designs. Both of these require
fundamental understanding of how electromagnetic wave interacts with the ship body in
the presence of ocean surface.

In the past, progress in this area has been hampered by the complexity of the problem. A
real ship is composed of large number of different parts, each with distinctive response in
the time and the frequency domains. Moreover, the presence of rough and highly
reflective ocean surface creates huge amount of multiple electromagnetic interactions with
the ship body. This is especially true at low elevation angles, where most_ practical
applications are concerned. Although recent advances in computational electromagnetics
-and- increasing capability of digital computers have made large scale electromagnetic
scattering problem more manageable [1-3], analytical methods [4-6] are still needed to
facilitate the interpretation of numerical solution. Furthermore, analytical methods can
also be efficiently combined with numerical techniques to increase the overall
computational efficiency. This research emphasizes the use of hybrid
analytical/numerical techniques for the analysis of electromagnetic interaction with surface
ships.

3. Research Achievements

Numerical simulation techniques for electromagnetic wave scattering by arbitrary shaped
objects in free space are well developed using wire and surface-patch models. The theory
and numerical approaches associated with objects near flat interfaces of layered media
have also been studied extensively by many researchers. However, in the case of a ship on




the ocean surface, the interface is inherently rough (sea surface) and relatively little work
has been reported. In principle, the standard Method of Moments (MoM) can be used to
solve for the unknowns (surface currents) both on the uoject and on the rough surface.
However, the need to discretize the rough surface significantly increases the
computational resource requirements compared to the case of scattering from the object
alone.

The main effort in our work has been the development of iterative techniques that
perform perturbational expansion to the extended boundary condition (EBC) integral
equations. After separating the equations into different orders, they are then solved using
the MoM technique. The layered dyadic Green’s function formulation is applied to all
orders to allow only unknown current distribution on the discrete conducting object but
not that on the rough surface to be solved, thus saving significant amount of computer
memory and CPU time. This hybrid SPM/MoM overcomes the difficulties of having to
deal with a large randomly rough surface that the standard MoM encounters when it is
applied to full three-dimensional problem. The zeroth order response in the hybrid
SPM/MoM technique has been found to be equivalent to scattering in the presence of a
flat interface, and the first and higher order responses can be solved from the same set of
(impedance) matrix equations with different equivalent sources derived at the ocean-air
interface.

3.1 Phase 1

In the first phase, we have focused on the development of far-field interaction models for
flat plates and circular cylindrical shapes. An iterative solution for scattering from a
conducting object above a randomly rough dielectric surface has been formulated using
Huygens’ principle. This model incorporates analytical techniques, Small Perturbation
Method (SPM) and Kirchhoff Approximation (KA) for rough surface scattering and
Physical Optics (PO) for scattering from the conducting body, to examine the direct and
multiple scattering mechanisms for the coupled configuration. - . -

We first considered scattered field from the conducting body and from the rough surface
alone. The secondary scattering components were evaluated by projecting the primary
scattering fields to the discrete object and rough surface as additional sources. Using the
iterative technique, we can evaluate the spread of scattering energy associated with
different surface roughness. The main lobe in bistatic return was seen to decrease with
increasing roughness, whereas some sidelobes pick up strengths. This spread is expected,
as the scattered energy is directed away from the specular direction.

A numerical technique based on the Method of Moments (MoM) solution of surface
integral equations was developed to validate the iterative solution. Monte Carlo
simulations over about 50 realizations of surface profiles were used to evaluate the
statistical average return in the combined rough surface/discrete object environment. The
surface roughness statistics and the incident waveform were assumed to be the same as in
the iterative method. Both models were applied to investigate the effects of radar
parameters (incidence and observation angles, polarization and frequency), and target




parameters (size and location of the object, roughness of ocean surface) on the scattered
fields. It was observed that the interactions strongly depend on the freauency, location of
object, and the ocean roughness. Discrepancies were observed between the iterative
technique using Kirchhoff approximation and MoM when the object is slightly above the
rough surface or partially submerged (practical case of interest), which suggest that
multiple interactions, beyond the secondary scattering covered by the iterative method,
need to be included. The use of the hybrid technique outlined in the next sections
improves the approximation significantly. As a by-product of this study, we also
examined angular correlation function of scattered waves based on the results of MoM. It
was observed that the detection of discrete object in the presence of rough interface would
be easier if angular correlation is taken along certain directions.

3.2 Phase 11

In this phase of research [7,8], we have developed a spatial-domain formulation for
electromagnetic scattering from a rough surface for an arbitrarily shaped incident wave
using the extinction theorem. By expanding the Green’s function and surface variables in
terms of the rough surface height function, the electric field integral equations (EFIE) has
been decomposed into different orders. It has been found that the higher order equations
are of the same form as the zeroth order equations, except for the source terms. Therefore,
for each order, the scattered field from the rough surface can be formulated as the radiation
fields from equivalent sources on the (flat) mean surface. In other words, we only need to
solve the zeroth order equations with different sources successively. Moreover, the
problem at each order corresponds to a flat surface problem, which can be solved without
discretizing the surface. Up to the first order, we have shown that the total field of the
equivalent source on a PEC rough surface is the field scattered by the rough surface.

The advantage of using the spatial-domain formulation instead of the frequency-domain
formulation as in the conventional SPM technique is that there is no need to integrate over
the spatial frequency . Furthermore, using the spatial-domain formulation, the non-
averaged scattered fields are well defined. However, the derivation of the total scattered
field of higher order (n>2) or the field scattered from a dielectric rough surface requires
more analytical effort since Sommerfeld integrals are involved. In the case of a PEC rough
surface, this extra analytical effort is avoided because the Green’s function can be
obtained by image theory and does not involve Sommerfeld integrals. By considering a
plane incident wave, we have shown that the total field of the equivalent source is the
same as the field scattered by a rough surface obtained by using the conventional SPM

technique.

Particularly for a rough PEC surface, the proposed spatial-domain technique is more
powerful than the conventional SPM for the calculation of the scattered field because:

(a) The incident wave is not restricted to be a plane incident wave as in the conventional
SPM, thereby allowing lower grazing angles in numerical simulations.

(b) The spatial domain formulation can be used to calculate the near field, which is
particularly important to account for near field interactions.




(c) The non-averaged complex scattered field in the spatial-domain formulation does not
requires the evaluation of a Fourier integral over the rough surface, therefore is a well-
defined quantity.

(d) The spatial-domain formulation is more computationally efficient, since there is no
integration over the spatial frequency as in the conventional SPM.

More detailed research results of Phase II are presented in the Appendix A [8].

3.3 Phase III

In this phase of research [7,9], we developed a hybrid spatial-domain SPM/MoM
technique to calculate the EM scattering from arbitrary 3-D conducting objects above a
rough surface based on the results of Phase II.

In this hybrid technique, the Green’s function and surface variables are expanded (using a
Taylor’s expansion) in terms of the surface height functions on the (flat) mean surface.
The electric field integral equations based on"the extinction theorem and the surface
boundary conditions are then decomposed into the different orders. Each order represents
an equivalent flat-surface scattering problem with the same geometry but different
equivalent sources. As a result, the problems of electromagnetic scattering from an object
above a rough surface can be solved efficiently by using the MoM incorporating the
dyadic Green’s function for layered media. More importantly, only the surface currents
on the object need to be found numerically by the MoM.

A nice picture emerges because the separation of the solution into different orders helps
the identification and characterization of the individual interaction terms between the
object and the rough surface. The separation of the return field into the sum of individual
interaction terms allow us to identify the coherent and incoherent return field, and thus
better characterize the rough surface effects quantitatively.

We have also analyzed the case of an object partially buried in a PEC rough surfacé. In
comparison to the case of an object above a rough surface, we have found the following
differences [7]:

(a) The integration area of the equivalent sources on the mean surface is changed to
accommodate the fact that part of the (infinite) flat surface is covered by the
interacting object.

(b) The are extra terms in the expression for the equivalent sources on the mean surface.
These terms are related to the correction of the equivalent source due to the change
on the exposed area on the object (part of it being buried) and to the modification of
the equivalent source due to the projected area of the rough surface on the mean
surface.

Several numerical results have been obtained. In particular, we have investigated the
interaction of horizontal conducting cylinders above a rough surface with Gaussian power
spectrum and validated the results against standard MoM results. Monte Carlo results




have also been generated using 100 rough surface realizations. The number of unknowns
for typical cases considered has been reduced by roughly 20 times. Moreover, a full
Monte Carlo monostatic RCS calculation which would require 3 months in a our 500
MHz Digital Alpha 21164A processor using the standard MoM, was reduced to
approximately 17 hours using the hybrid MoM/SMP technique.

More detailed research results of Phase III are presented in the Appendix B [9].

3.4 Phase IV

A basic limitation of usual numerical techniques to analyze the problem of
electromagnetic scattering from rough surfaces is the need to truncate the rough surface
because of limited computational resources. This leads to erroneous results due to
artificial edge truncation when ideal plane waves are used to excite the configuration. The
tapered wave concept is based on providing an illumination for the numerical simulation
which resembles the plane wave case to be modeled closely to the center of the scattering
scenario (including the choice of a particular polarization) while its intensity becomes
negligibly small upon approaching the artificially introduced edges of the rough surface.
Therefore, unwanted edge effects due to the primary incident wave are minimized and a
proper normalization of the computed scattering coefficients allows a meaningful
comparison with the ideal plane wave case. Moreover, near field quantities such as
current distributions induced near the center of the tapered wave are also expected to be
similar.

The tapered wave should be constructed in such a way that it satisfies the Maxwell’s
equations. This helps to increase the confidence in the results obtained from numerical
simulations. Furthermore, it should also be possible to substitute it for a plane wave of
arbitrary polar and azymuthal angles of incidence without loss of polarization or
degradation of tapering.

In this research phase [10], we have considered the problem of constructing a 3-D tapered
wave with dominant polarization state for all angles of incidence as a superposition of
plane waves, taking into account both propagating and evanescent waves. The use of the
simple Gaussian plane wave spectrum was considered in order to avoid problems near
grazing incidence. Moreover, we have proposed a choice of unit vectors which leads to
integrand which are continuous at normal incidence. As a result, a clean footprint (no
degradation of tapering) with clear polarization (no loss of dominant polarization state)
has been obtained for all angles of incidence. Besides removing the singularity at the origin
of the wavenumber space, the proposed special choice of polarization vectors has lead to
a least square error property of the wave. The choice of polarization vectors was shown
to lead to an exact solution of the Maxwell’s equations which is an optimal approximation
of an ideal but non-Maxwellian tapered field that is constructed by multiplying a scalar
tapered wave with a constant polarization vector. Approximate 3-D scalar and vector
tapered waves, which can be evaluated without any numerical integrations, has also been
derived.




More detailed research results of Phase [V are presented in the Appendix C [10].

4. General Conclusions and Future Directions

4.1 General Remarks

In our approach we successfully combined an analytical preprocessing (perturbational
expansion) of the problem of electromagnetic scattering from an object in presence of
rough surface to be used in a numerical solution by the MoM. This combination of
analytical and numerical treatment lead not only an improvement on the overall
computational efficiency of the resultant (hybrid) scheme, but also permits a better
physical interpretation of the results given by the computer (i.e., separation of the object-
rough surface interaction into different orders) which is much difficult using a strictly
numerical procedure.

The development of theoretical framework needs to be coupled with experiments, both
for validation, and for evaluating new measurement techniques. In essence, one can
perform theoretical simulations that take into account the measurement setup and assess
the impact of testing probes. One of the long-term goals of our research is to provide
recommendation on experimental schemes.

However, many important issues are unresolved still. For instance, being a perturbational
expansion, the hybrid scheme can become very involved for non-slightly rough surfaces.
Hybridization with other techriques and use of composite surface models need to be
investigated in connection with more general rough surface conditions. Moreover, in the
course of our research we have dealt only with the forward problem. For the identification
of radar signatures and reduction of radar signatures the forward techniques need to be
coupled to inverse scattering techniques. These and other issues are discussed below.

4.2 Future Work ' o

One immediate future goal is to extend the applicable range of our hybrid technique.
Major technical issues to be addressed include the extension of the hybrid technique to
composite rough surface model with impedance boundary condition, which will be used
to characterize different sea states, and the integration with standard high-frequency
techniques, such as ray-optical methods, for large objects.

4.2.1 Impedance boundary condition.

To obtain a closed-form Green’s function, thus avoiding the need of extra integrations, we
have assumed that the ocean surface behaves like a perfectly conductor. In reality, the
behavior of highly conducting interface is quite different for low-grazing incidence angles.
Major difference is exhibited in the angular variation of reflection coefficient for the
vertical polarized waves. The reflection coefficient converges to minus one (-1) at near
grazing incidence even at the limit of conductivity reaching the infinity. On the other
hand, the reflection coefficient at a perfectly conducting interface is always plus one (+1).
This non-uniform convergence property can conceivably contribute to differences




between the perturbational series expansion for the perfect-conducting interface case and
that for the high-conductivity interface (real sea water) case. Because of this concern, we
propose to extend our formulation to incorporate impedance boundary conditions for
highly (non-perfect) conducting interfaces. Doing so should represent the sea surface
property better and avoid the non-uniform convergence problem.

4.2.2 Composite rough surface model.

Based on practical experience, the effect of rough ocean surface on scattering from ship
objects becomes non-negligible only at high frequencies. In such cases, it is necessary to
consider a two-scale composite rough surface representation of the ocean surface [11].
The perturbational formulation developed here can be easily generalized to deal with the
two-scale model. With the two-scale model, the large scale underlying surface structure is
sufficiently smooth to apply high-frequency scattering techniques such as physical optics
or ray-optical techniques. The ship objects can also be facetized and included in the
computational domain with the large-scale rough surface. The hybrid technique developed
here may then be used in parts of the object and surface where there strong multiple
interactions are expected to improve the accuracy, with the perturbational formulation
being introduced to account for the effect of small-scale roughness.

4.2.3 Finite-distance source synthesis.

At low grazing incidence, it is important to observe that the scattered field from the rough
ocean surface will interfere and merge with the incident field that is propagating near the
surface. The net result is that the actual incident field reaching ship objects is modified;
likewise the return field to the sensor will be modified owing to scattering from the rough
surface. To deal with this practical problem, we propose to include a source term at a
finite distance into the iterative formulation instead of a synthesized wave beam that may
not represent the true incident field near the ship objects. The source term should be
constructed to emulate the transmitting antenna properties. Taking into consideration
the statistical properties of rough ocean surface and the antenna beam pattern, we can
calculate the surface current distribution for near-field illumination as well as the
dispersion characteristics. The calculated results can then be compared against
experiments that involve objects on a real ocean surface.

4.2.4 Inverse problem.

The essence of identifing radar signatures can be considered an inverse scattering problem.
The work here begin with the forward scattering model developed and proceed to the
inverse model. The link between the two is established through optimization techniques.
In the optimization approach, the developed forward model and observed measurements
are used to retrieve unknown source parameters. This is usually the most appropriate
inversion method when the direct scattering theory is very complicated. In addition, this
method offers a great flexibility in the choice of direct scattering models, the parameters to
be inverted, and data to be employed. We have previously applied the optimization
technique to the inversion of ground truth information from satellite remote sensing data,
such as inversion of sea ice parameters from the CRRELX experiment [12]. One
drawback of the optimization technique is the amount of computational resources
required, since multiple forward scattering solutions are needed. One way to overcome
this problem is to extract reduced-order models from the complete forward scattering




solution and use them at intermediate stages of the optimization procedure. An example
of reduce-order modeling consists in the replacement of the scattering object by scattering
centers [13].

Aside from the optimization techniques, direct time-domain inversion techniques [14,15]
can also be considered. For example, in the singularity expansion method (SEM) [16]
feature extraction is achieved by studying the natural frequencies contained in the time-
domain response. This technique might well be suitable for identifying local dispersion
characteristics of substructure components.

For the inverse scattering problem, non-uniqueness and inversion stability issues usually
arises with noisy data. It is possible to reduce the effects of these uncertainties by using
multi-dimensional data like multi-frequency, multi-angle, and polarimetric data. For
instance, electromagnetic wave polarization returns are particularly sensitive to the
geometry and the degree of heterogeneity of scattering objects. Using polarimetry, the
copolarized and depolarized returns for an arbitrary polarized incident wave can be
measured and exploited for the classification and identification of targets [17].
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Abstract

We present a derivation of a spatial-domain formulation for electromagnetic wave scattering from
a rough surface for an arbitrary-shaped incident wave using the extinction theorem. By expanding the
Green'’s function and surface variables in terms of the rough surface height function, the electric field
integral equations (EFIE) are decomposed into different orders. For each order, the scattered field of
rough surface is formulated as the radiation of equivalent sources on the mean surface. The spatial-domain
formulation is simpler and not restricted to use a plane incident wave as conventional small perturbation
method (SPM) does. The spatial-domain formulation can also provides a non-averaged scattered field
without using the Fourier transform of the rough surface. The numerical result for a non-planar incident

wave is verified using the method of moments (MoM).

Keywords

Rough surface, electromagnetic wave scattering, spatial domain, equivalent source, small perturbation

method.

I. INTRODUCTION

The electromagnetic wave scattering from a slightly rough surface has been studied
extensively using (1) the Rayleigh hypothesis [1], [2], and (2) the extinction theorem (3],
[4]. In all of these methods, a plane incident wave has been assumed so that the scattered
fields can be obtained by expansion in terms of plane waves. Therefore the scattered
fields are the superposition of plane waves. The averaged scattered fields are calculated
by ensemble average over the rough surface, thus the expression after the average is the
integral over the wavenumber for a function of the power spectrum density of the rough
surfaceé. The limitation of thé convéntional SPM is obvious: (1) a plane incident wave must
be assumed, which may arise the difficulty when a incident wave with a grazing angle is
considered, (2) a Fourier integral of a rough surface appears in the non-averaged scattered
field, and (3) it is time consuming to evaluate the integration over the wavenumber when
the closed form of the scattered field could not be obtained.

In this paper, we derive the formulation in spatial domain for the field scattered by a
slightly rough surface. In Section II, based on the extinction theorem, we formulate the
equivalent sources on the mean surface for a dielectric rough surface. Then we introduce
the iterative scheme to calculate the total scattered field. In Section III, in order to

calculate the reflected and transmitted fields of the equivalent sources on the mean surface,
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we expanded the Green’s function as the integral in frequency domain. The closed form
in spatial domain of the first-order field scattered by a perfectly conducting (PEC) rough
surface is derived in the end of this section. In Section IV, we show that the first-order
scattered field in spatial domain from a PEC rough surface is the same as the conventional
SPM by assuming a plane incident wave. For arbitrary-shaped incident wave such as
Gaussian-tapered wave, the spatial-domain formulation provides accurate result which is

verified using the method of moments (MoM) in Section V.

II. ELECTROMAGNETIC FIELD INTEGRAL EQUATIONS

In the recent investigation on the electromagnetic wave interaction between a perfectly
electric conducting (PEC) object and a rough surface, it was found that the problem can
be solved by replacing the rough surface with a flat one and placing an equivalent surface
on the flat mean surface [5], [6]. It immediately arise the question that if the equivalent
source method can be applied to calculate the electromagnetic wave scattered by a plain
rough surface.

Consider an electromagnetic wave E;(7) incident upon a rough surface S, with surface
height function z = f(7)) and mean surface S, coincident with the zy-plane as illustrated
in Fig. 1. The upper and lower spaces V| and V, are homogeneous, isotropic media
characterized by (e, 1) and (e, u2), respectively. By applying the extinction theorem,
the electric field integral equations are written as, respectively, for the observation point

atre W,
Ei(f) + /s dS" {iwmG(r, ) - [?l(f’) x Hy ()]
+V x Gi(7,7) - [ (F) x Ea(7)]} =0 (1)
and for 7 € V5
-/Sf dS' {Z‘w,ugﬁg(?:, F’) . [‘ﬁz(fj) X F2(F’)]
+V x Go(F, ) - [Aa(F) x Bo(7)]} =0 (2)

where ﬁl and 52 are dyadic Green’s functions for unbounded regions V; and V3, respec-

tively. 71;(7') denotes the local normal vector pointing from the rough surface S, to the
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Incident wave E;

Region 1

Rough surface S,
2=f(R)

Fig. 1. Electromagnetic wave scattering by a rough surface.

upper region V;. The normal vector 7, (') is anti-parallel to #, (), i.e., fig(F) = -y, (7).
E\(7') and H,(¥) are electric and magnetic fields on the rough surface in region Wi, while
E,(7') and H, (') are surface fields on Sy in region V,. If the region V; is dielectric, then

the tangential fields are continuous, thus

1 dF)

M (7) x Hy(7) = 7, (7) x Hy(7) = 77—1-55—,{1(5'l (3)
W) % B(F) = () x Byfr) = Thige @

where a(7 ) and B(7, ) are two new surface variables defined on the mean surface S,, 7; is

the intrinsic impedance of the upper region Vi, ie., n; = v/ #1/€1, and dr| is the projection
of the infinitesimal area dS’ on the mean surface S,. With the new surface variables, the
integral equations are rewritten as
Ei(7) + /S ¥ {ik, G\ (7, 7) - a(7))
+V x Gy (7, 7) - b(F)} =0 for F € v (5)

/ di, {ik,,@:G:g(f, ) -a(F,
So ™m

+V x Go(F, 7) - l_J(F'_L)} =0 forFeV;. (6)
Theoretically, given a deterministic rough surface profile Sy, the unknown surface variables
a()) and 5(,) can be solved from Eqgs. (5) and (6). For the special case in which the

surface is flat, the surface variables a(7,) and b(7,) have only the horizontal components,

and the local coordinate 7 in the dyadic Green’s functions can be replaced by .
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A. Ezpansion of Green’s Function and Surface Variables

As illustrated in Fig. 2, the local position vector 7 on the rough surface can be expressed
as the sum of the horizontal vector , and the vertical vector (). Therefore the scalar
Green’s function g, in region V, (where @ = 1 or 2) can be expanded in terms of the

surface height function f(7,) on the mean surface S,,

arr

Rough surface

Fig. 2. The local position vector ¥ on a rough surface is the sum of the horizontal and vertical components.

9a(, ™) = ga(F, 7\ +2f(7))
= X g e H ) )" 7
where the following property of the scalar Green’s function has been used:
o m 0"
az_,mga(ra’—'l) =(-1) é;ga("',f,)° (8)

Thus the dyadic Green’s function can be expressed as

Gu(F,7) = <I+ = VV) 9a(F, 7)
- il[f( O™ 5= CalF 7). ()

The surface variables are also written as the series expansion as follows:

a(F,) = i [ (7) + 288 (7)) (10)
i) = Y [ + ) o mw

In Egs. (10) and (11), the separation of the z-components allows the only unknown surface
variables to be the tangential component since the z-components of the m-th order can
be expressed in terms of the tangential components of order (m —1), as we will see below.

For the definition of @ and b as in Eqs. (3) and (4), the following identities hold:

(7)) - a(F))
A (FL) - b))
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where the normal vertor is related to the surface height function by

.oy V(L) +2
nl(T_L l V7 f( )+Z| (14)

Substituting the series expansion of @ and b as in Egs. (10) and (11) into Eqgs. (12) and
(13), respectively, and assuming that the derivatives 8f (¥ )/8z' and 8f(7,)/0y' are of the

same order as k; f(7, ), we then get the m-th order z-components of the surface variables

a and b in terms of their (m — 1)-th order tangential components as follows:

am() = Vi) -af o) (15)
M) = VL) BTV (. (16)

B. The n-th Order Equation and Equivalent Sources

Substituting the series expansion of the dyadic Green’s function [Eq. (9)] and the surface
variables [Eqs. (10) and (11)] into the integral Eqs. (5) and (6), and re-grouping the terms
with the same order of the surface height function f(7,), we obtain the following n-th

order equations:
EP @ + [ ar {7 - aP
+V X Gi(F,7) - BP(F)} =0 forreV, (17)

—(")(r +/ di', {1k2—G2('r ) - Ef)(f'_L)

+V x Gy(7,7) - B(7)} =0 forre W (18)

where for the zero-th order (n=0), FE _(0) (F) = Ei(f) and E —(0)(r) = 0. For higher orders

(n 2 1), the first terms in the equations above are written as
BO0) = 3 o [ ars -1
S X NCEAR A
+V x GI(F GARERIGA)
+m_1 (m 1), /dT_L —fE™

A R A AR N AR lUA
+ VX Gi(F, ) - 2 [ViLF(FL) - BT ()] ) (19)
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and

““’()—Z el KA G

o™ arm
9z™ { ky— m G2(T 71)-a (7L

+V x Gg(i" ) 50}

+ 1)|j[dtL[ f( ]m

m=t (10
o1 = —m
p {ik277—1 Ga(F,7y) - 2 [ B IGAR )(T_L)]
+V X Gy(r, ) - £ [V () - B0} (20)

Comparing the zero-th order (n = 0) integral equations with Eqgs. (5) and (6) for the
flat interface [f(7}) = 0], we notice that they are the same except for an additional
superscript (%) at the surface variables @, and b,. Therefore the solutions @ '(0) and b(o) for
the zero-th order equations should be the same as Eqgs. (5) and (6) for which the surface
is considered to be flat. For the higher order equations (n > 1), we also notice that they
are in the same form as the equations for flat surface, except for the substitution of E;
by E{") and the additional “source” term “ET( ™) in the lower region V,. We call the terms
F(") and F —( ) are the equivalent sources (ES) placing on the mean surface S, of the rough
surface as illustrated in Fig. 3. By denoting the corresponding reflected ﬁeld as E _( ) for

the equivalent source E( M4
F( n) .

in the upper region V;, and the transmitted field as for the
—equivalent source in the lower region, the total scattered field from the rough surface
illuminated by the incident wave E; can be expressed by

0 =Y (B0 + () + S EDw). )

n=1 n=1

C. Iterative Scheme for Total Scattered Field

Egs. (19) and (20) provide the spatial-domain formulation of the electric field from
the equivalent source in terms of the lower order surface variables. The following is the

iterative procedure to calculate the scattering field from the rough surface:
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‘E‘I( n} F{"’ l Egt)

Fig. 3. Radiation, reflection and transmission of equivalent sources on the mean surface.

1. The zero-th order scattered field: Calculate the reflected E.(7) and H, () of the incident
fields E;() and H;(F) from the mean surface. Thus the zero-th order scattered field is the
same as the reflected field B\ (7) = E, -(7) and HV(7) = H, (7).

2. The first-order scattered field: Calculate the total zero-th order fields on the mean

surface
E%) = B +E°® (22)
7% = 7.+ 3O (23)

Then calculate the surface variables of the zero-th order can be obtained by

aP(F) = mzxHOF) | (24)
() = zx EOF). (25)

Thus the first-order scattered field can be calculated by

E® = BO+E00 + 506 (26)
506 = B0+ 7Y@ + 7Y () (27)

where E )(r) and H (r) are the fields of the first-order equivalent source which can be
calculated by using Eq. (19) for n = 1. EU )(r) and H, 7Y (r) are the reflected fields of the
equivalent source in the upper region V;, and E (r) and H\ (r) are the transmitted fields
from the equivalent source in the lower region V.

3. Calculate the n-th order scattered field: Calculate the surface variables

aP (7)) = ms
* [VLrGOHE D) + B )] (28)
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B =2
< Vi) B + B (). (29)

Thus the n-th order scattered field can be calculated by

EYF = BV +EVF) +ER () (30)
B = BV +HO @) +Hy () (31)

where E )(r) and H )(r) are the fields of the n-th order equivalent source, E n) (1") and
HS") (F) are the reﬂected fields of the equivalent source in the upper region Vj, and E\ (r)

and H _(ﬂ) (7) are the transmitted fields from the equivalent source in the lower region V,.

III. INTEGRAL REPRESENTATION OF EQUIVALENT SOURCE

The integral representation of dyadic Green’s function in region V; and V; can be written

as [7], respectively,

= _ LO(F, 7
G\ (7, 7) =—-22 (k2 )+_8—7§
dl—c_L—l- A, (ky e =T z>2
R o (32)
/dk_L;—" Al(—klz)etK‘.(r— ) z < Z'
12
and
LO(F, 7
Gg(T 7-‘4)—-— (k% )+87I'2
/dklki iz(kzz)eikz'(f—?l) z>7

R s (33)
o T g o<
2z

where we define

A(k:) = &1(ke)ér (kre) + Ry (krz) o (ki) (34)
As(ky:) = éa(ks)ea(kas) + ho(koz)ho(kss) (35)

and é; - and le,g are unit polarization vectors defined in Appendix. The up-going wave

vectors k, and ky are expressed as k; = &k, + gk, + zk1, and ko = 2k, + gk, + 2k,
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respectively, and the down-going wave vectors K, and K, are expressed as K| = £k, +

gk, — 2k1, and K, = £k, + gk, — 2ka,, respectively. Defining the dyads

_El(klz) = ’Elx—il(klz)

= —ill (klz)él(klz) -+ él(klz)ill (klz) (36)
ﬁz(khz) = k2 X i?(kz‘l)
= —h(ka:)ea(kas) + e2(ka:)ha(kaz) (37)

we write the expressions for V x ﬁu (7,7) in terms of the integral of ?1,2. The operator
d™/0z™ applying on 51,2(1’, 7) and V x 51,2 (7, 7) creates the following eigenvalues:

(38)

o (tk12:)™ z> 2
azm

(—ikl,zz)m z< 2.
Therefore, the radiation field from the equivalent source on top of the mean surface can

be written as follows:

For up-going wave (z > 2z')

n 3 = 1 et = m
BP0 = ~gmh 3 o [ ar =1

{ [ dhs (k)™ A (hre) e a0 (7

+ / dky (iky,)™ " B, (ky )™ =) . pln=m) (f;)}

: 3 . 7 s \jm=
_gﬁkl ,,,Zz:lm/drl [-fFE)™
{/dl_c_L (ikxz)'"—2 jl (klz)e,','cl.(,-._F,)

2 [Vifr) -al )]

+ / dky (k)™ 2 By (kyp)e™ )

2 [V ) - 8]} (39)
R P AT (A

{7]_2 /dEL (ikzz)m_l ij‘z(kzz)eil"cz.(f—f/) ) ag;—m) (7—"_1_)
Uit
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+ [ dku (ika)™" Balka,)e B 577 (m}

iky & m—1
8n2 £ Z - (m — 1)'/d Ll

{— / dFL (ikas)™? Zp(kay)e =)
2 [V () el ™ ()]
+ / dFy (iks)™ 2 By (kn,)eFr =)

2 [V 5]

For down-going wave (z < 2)

May 30, 2000

Egn)(f) 'l.kl z /dJ_[ f

{ / dky (—iky)™" gK1(F=7)
A=) 87

+ [ b (=)™ e"?x-(f—m}

Bi(~ks) '5<"—m>(-/)

-Hkl 1)'/d [—-f(,:’i-)]m—l

87!'2 m=1

{ / dk, (—z'/cl,,)"“2 A, (—kp,)eFr =)
2 [V () -al ™™ ()]

+ [ dky (=iky) ™ Bi(—k)e K0

2 [V 3] |

OB DY EAS A

87r2 v
{7—72— / dk, (—ikzz)m—l K2 (F—F)
A2( ka) - —(n m)(ﬂ)
+ [ ks (i)™ &0

11

(40)

(41)
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By(—ks.) - E(f—m) (f'l)}
Zkz m—1
872 E (m 1)! / ary L)

m=1

+—=
{ /dk_]_ 1k2z)m_2 Az( kz )B‘K2 (F—7)
2

(7D -al ™ ()]
+ / dFy (—ikas)™ 2 By(—kay)e Ko F—7)

ARGV | 2)

The down-going wave ﬁ and up-going wave —Ef; ) will be reflected by and transmitted

through the mean surface, respectively.

A. Reflected Field of Equivalent Source

nj} .
) into a sum

To calculate the reflected wave of the equivalent source, we decompose Ef
of TE and TM waves. Recalling the definition for il, fl, jg, and =§2, we know that the
product of é,(—k;,)é;(—k;) or él(~klz)ﬁ1(—klz) with any polarization will be a TE wave,
and the product of izl(—klz)ﬁl(—klz) or ﬁl(—klz)él(—ku) with any polarization will be a
TM wave. To get the reflected wave for the down-going wave E*,."’ for z < Z/, we do the
following:

1. Multiply the TE wave terms by RT¥(k;,) and the TM wave terms by RTM (klz) in the
integral representation of the down-going wave E_( ) '

2. Change the sign of k;, for the first unit polarization vector in the tensors il and 2_3—{,
and

3. Change the down-going wave vector K, to the up-going wave vector k; in the exponen-

tial terms.
Thus we find
B0 = s 3 o [ -1
{[ s it (720 ()
+R™M (ko) (k)b (< e ) €510 a0 (7))
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+/dl_c_L (—iky,)™ ! (—RTM(klz)Bl(klz)él("‘klz)

+RTE<ku)el(ku)f‘n(—ku)) ek (=r) . glp=m) (fi)}

zk1 / d, (7, m_

m—l
{/ dk, (-—iklz)m—2 e e=r)
(BT (k1o)ér (kus)er(=Fiz)
+RTM (k) (kv s (k)
[V f() -al ™™ (7))
+ [ d (i) )
(_RTM(klz)ill (k12)é (—ku‘)

+RTE(k1z)él(klz)ill(_klz))

£ [VILF(7L -E‘f-’"’(ﬂ)]}- (43)

In the above equation, the Fresnel reflection coefficients are defined as follows:
R(hs) = 2 (44)
R ®
RT®(h) = —RTP(k) = (46)
R™ (k) = —RT™(k,,) = — 2k~ @k (47)

e2k1; + €1ka,
where RTE(k,,) and RTM(k,,) are the reflection coefficients for TE and TM waves inci-
dent from region V; to region V,, respectively. RTE(ky,) and RTM(k,,) are the reflection

coefficients for TE and TM waves incident from region V; to region V, respectively.

B. Transmitted Field of Equivalent Source

To get the transmitted wave from the equivalent source in the lower region V;, we work
on the up-going wave E( ™ in Eq. (40) as following steps:
1. Multiply the terms with &, as the first vector in the tensors with 77 and multiply the

terms with h, as the first vector in the tensors A, and B, with TT™ |
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2. Change the first vectors é,(k,,) and hy(k,,) in the polarization tensors to é1(ky;) and

ill (klz), and

3. Change the up-going wave vector k3 to k; in the exponential terms.

Thus we get

AR D Y EAT A

{;717—? / dk; (ikg,)™ ! (TTE(kzz)él(ku)éz(kzz)
T (ko) by (ki) o (kz) ) €510 a0~ (7))
+ / dI_C_j_ (ikgz)m-l (—TTM(’C%)FH (klz)éZ (k2z)

+TTE(k2z)él(klz);l2(k22)) iky- F-7) . b(ﬂ—m)( 7 }

5 5 g e

m=1
{ % / dk, (iky,)™ 2 (TTE(kzz)él(klz)é2(k2z)
+TT™ (ky, )Ry (klz)hz(kgz)) gik1(F—)
AN GARERIGA)
+/dk_|_ (tka)™ m-2 (_TTM(kgz)ill (k12)éa(kay)
+TTE(k2z)é1(klz);32(kzz)) oiF1-(F—F)

AR ]

(48)
where the transmission coefficients are defined as follows:
TTP(ky,) = 1+ RTE(ky,) = 0k (49)
z 1 klz + k2z
T™ (k) = 2 (1+R™ (k)
)
P 2e2k1,
—0 2Mz 50
M €2k1; + €1ko; (50)
2k
TTE(ky,) = 1+ RTB(ky,) = —22— 51
(k) = 14 R™(ka) = =2 5
T (k) = (14 B™ (k)
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n 2¢, ko,
12 €2k, + €1ka;

C. The First-Order Field Scattered by PEC Rough Surface

(52)

For a perfectly conducting rough surface, the tangential electric field is zero, thus b(o)

0. Therefore the first-order field of the equivalent source can be written as [from Eq. (39))
) = o [ dris

/ dklAl(kl )e'k‘ (7= -c‘z(o)(f" )

1k1 —t iky-(F—7 ).
—o [ @ [ dF.- klz A, (ky)e
[ () e (TJ.)] : (53)

Notice that the Fresnel reflection coefficients of the TE and TM waves for perfectly con-
ducting surface are RT®(k;,) = —1 and R™™(k,,) = 1. Therefore, from Eq. (43), the
first-order (n = 1) reflected wave of the equivalent source from the perfectly conducting

surface is

F:ﬁ"(f)— iky / a7, f(7,) / dkl(el(klz)el(ku)

+ﬁl(k1,)fz1(k1z)) R 07,
b far, far < (ke (k1)

+izl(klz)ill(k1z))eizl.(F—F)
2 [Vif(r) - al ()

= ”“1 / d7! (fl)/ dky A, (ky)e® -7 . g0 (7))
_gr—lz / dr, / dI_cJ_ikllz A, (kyp)e®r = 2
(Vs -aP )] (54)

Notice that the first-order reflected wave from the mean surface of the perfectly conducting

rough surface [Eq. (54)] is the same as the first-order radiated field of the equivalent source
[Eq. (53)]. The transmitted field ‘E*,;) is zero, thus the total scattered field is

EV@ =EN ) +EV () = 2BV ()

May 30, 2000 DRAFT




= ik, [ dr J_f(rl) G\ 7)-aQ )}
+22k1/dT_LG1(r T.L)
[ L f(7L) - S?)(r.l_)]

IV. CoMPARISON WITH CONVENTIONAL SPM RESULT

16

(55)

Consider a plane wave E;(7) = EX)(7) = & E,e' incident upon a perfectly conducting

rough surface. The SPM solution of the zero-th order surface variable a® is [7
1
—(0) (r,l_) — a(o) (kiJ_)eiE"J"FZL
where
aQ(kiy) = Qiago)(l_cil) + pial) (kiL)
T N ‘A kiz
ago)(k,-l) = 2[& - é(—ki) Eok_1
afno)(l;,-_;_) = 2 [é,‘ . il(—k,'z)] E,
and the basis vectors are defined as follows:
R 1 . .
g = F(Zkiy — Jkiz)
ip
. A 1 -
Pi = % X §; = —(Thkiz + kiy)
kip

~ -

zZ; = Z.
Defining the Fourier transform pair
N 1 i e
Fh) = gy [ drie L)
f7) = [dreRRR))
and the delta function
- 1 I
*5) = Gy / drie™ "+
we can write the following relations as:

afi: - Tr ik 7 1t (T
a(z'l) = i / k) eF Tk F(R,)

af (7, R -
6y’l = i / dR, eFa ik F(EL)

L) = i [ e (ke + k) PRL)
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(60)

(61)

(62)

(63)
(64)

(65)
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By making vse of the vector products

(ikz + ﬁky) * éi =

k,-p
k. kiz + k k;
3k, +gk,) -5 =~ Sl
k,'p
(f?kiz + ﬁk,-y) g =0
(Tkiz + Gky) - D = kip
) C kyky o+ ki,
Bl(klz) g = kpkip
“ ~ kizky - kiyk:c
el(klz) Di = kpkip

and integrating the transverse wavenumber, the first-order scattered field in Eq. (55)

rewritten as
EN) = E, / dk &R TR By — kiy)é: (vs)

kiyky + kizkz k;

of, Yy | T I Mz 8; - e(—ki,

(o St ke ) o

+Eo /dE_LeiEl.FiF(I-C_L - E,'_L)él (klz)
kizky — kiykz \ 1.

(2]91—]6—"—"6—::'——) [C,’ h( k,z)]

+B, [ dkieBTiF (kL - Ko (ki)
klkiz kzkiy - kyki:z PO

( 2klzkp kip - ) S kzz)]

+Eo/dkl€iEI'FiF(l_C_L - E,L)ib-l (klz)

k¥ koki + kyk; kok;
-2 1 Tz yviy 2 pVip
( klzkp kip * klz )
[é,‘ . il(—k,‘z)] .

By rewriting the scattered electric field in a matrix form
'Eé"(f)]
1)/
LB, (7)
- / dk e TiF (R, — Fiy)

EVr) =

.fhe
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-fee feh] [ét 'é("‘kiz)Eo

é,‘ . ib(—kiz)Eo] (67)
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the scattering matrix is *hen obtained as

[fee feh]_
fre Jhn

ki k +kizkz E,u_ ki:’_cl—ki[k:
2k, ~amiTizte 2k, ,
kokip k1 kokip
__ 2k kip i kzkiy—kykiz _ 2’9? kzkiz+kykiy + 2kokip
klzkp k"p kltkp kt’p k1

(68)
Expressing the wavenumber components by using angles 8, ¢, 8;, and ¢;, we find the scat-
[fee f eh] _
Jhe [fun
[ 2k;; cos (¢ — &) 2k, sin (¢ — &) ]
Bakic sin (¢ — ¢;) 2 [sinsinb; — cos (¢ — )] ]

tering matrix to be

(69)

Notice that the components of the scattering matrix [Eq. (68)] derived above using the
equivalent source formulation for a plane incident wave are the same as the ones using

conventional SPM as given in [8] for the limiting case of k; — oo.

V. NUMERICAL RESULT

In this section, the backscattering coefficients will be calculated by using the first-order
equivalent source formulation for a Gaussian-tapered incident wave and compared with
the standard method of moments. The backscattering coefficient is defined as

LB — (E))

2 (70)

Oop = lim 47nr
r—0o0

12
where P, = / IE;! dA is the power of the incident wave on the illuminated area with
the integral over the mean surface. On the mean surface, the electric field of a Gaussian-
tapered wave can be written as E} = Eoe“'z/ -"2, where g is a factor specifying the beam

width. Therefore we get, for the Gaussian-tapered incident wave,

Pi= [rar / 4 |Eafe /7 = B L (m)
0
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In the numerical calculation, the expected backscattering coefficient are calculated by

averaging the samples of the scattered field, thus

{1 = (E)P)
P

O = lim 4nr
r—oo

ZJ

1 N
PR

N
> E;
n=1

"N 1
N1 | IEl -+
r40o P N-—-1 e N

2]

where N is the number of realizations in the Monte Carlo simulation and “~” means

. 1 QA a2
=M N N,EIIE“I -
(72)

statistically estimated. It is convenient if we use the standard deviation to normalize the

calculated profile f(z,y). The standard deviation ¢ can be obtained as

oo 2
2 __
o? = /0 kdk /0 daW (k, @). (73)

Scattered Field from PEC Rough Surface
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Fig. 4. Comparison of the scattered field calculated by using the spatial-domain formulation with the
result by the method of moments (MoM).

In the numerical simulation, we use the power law spectrum to generate random rough
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surfaces. The power law spectrum function for rough surfaces is defined as

o%k2k? .

W)= ik

(74)

where o is the rms height, and k. and k. are the low and high cutoff wavenumber of the
rough surface, respectively.

Fig. 4 is the numerical result for the backscattering coefficients of the co-polarized waves
onn and o,, by using the spatial-domain formulation in comparison with the standard
MoM. The rms height of the rough surface is ¢ = 0.01) and the number of realizations
is N = 30. The incident wave is tapered with the factor g = 3.0\. The central plane
wave of the tapered incident wave varies its polar angle from 20° in order to avoid the
strong specular reflection of the incident beam close to the normal incident angle. The
comparison of the results demonstrates good agreément between the two different methods.
At low grazing angles, the MoM code does not provide correct results due to the difficulty
to increase the size of rough surface at these angles [9]. The spatial-domain formulation
gives reasonable results at low grazing angles where o, drops to zero and oy, tends to a

constant when the grazing angle approaches zero.

VI. DISCUSSIONS

In this paper, we have derived the spatial-domain formulation of the equivalent sources
for any orders and the simple spatial-domain formulation of the first-order field scattered
by a PEC rough surface. Up to the first order, we have proved that the total field of
the equivalent source on a PEC rough surface is the field scattered by the rough surface.
The advantage of using the spatial-domain formulation instead of frequency domain as
in the conventional SPM formulation is that there is no need of integration over the
spatial frequency and the non-averaged complex scattered field is well-defined. However
the derivation for the total scattered field of higher order (n > 2) or the field scattered
from a dielectric rough surface requires much more effort since the Sommerfeld integrals
are involved. By considering a plane incident wave, we have found that the total field of
the equivalent source is the same as the field scattered by a rough surface obtained by
using the conventional small perturbation method (SPM). Particularly for the PEC rough

surface, the equivalent source formulation in Eq. (55) is more suited than the conventional
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SPM in the calculation of the scattered field, since

1. The incident wave E; is not restricted to be a plane wave as in SPM, therefore it works
well at low-grazing angles.

2. The spatial-domain formulation can be used to calculate the near field.

3. The non-averaged complex scattered field in spatial-domain formulation does not use
the Fourier integral over the rough surface, therefore it is well-defined.

4. The spatial-domain formulation is computationally efficient, since there is no ihtegration

over the spatial frequency as in the convention SPM.
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APPENDIX
The integral representation of the dyadic Green’s function in unbounded space is given

by [7]

G.(77) = —332007) 1 1
G\(F,7) = -2z 2 +8ﬂ_2//dk,dkyklz

1

[é(klz)é(klz) + il(klz)il(klz)] eik1(F=F)

2> 2
[é(_klz)é(—klz) + B(—klz)ﬁ(—klz)] K1 (F—7)
2< 2
(75)
where
N
f(ky,) = =9k -
2 klz N .
kL) = F— P sk 4ok
( 1 ) q:kl‘/m( Yy y)
R (77)
Bo= ki+kiths (78)
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Ky = k.&+kyj— ki (79)
ki, = ,/kf - k2 — kg. (80)
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Appendix B

Electromagnetic Wave Interaction of Conducting Object with Rough Surface by
Hybrid SPM/MoM Technique




I INTRODUCTION

Recently, there has been a great interest of studying the electromagnetic wave scattering
from object situated above rough surface [1, 2, 3, 4, 5, 6, 7]. Previously, electromagnetic
wave scattering by arbitrarily shaped objects in free space has been well developed using
wire [8, 9, 10] and surface-patch model [11, 12, 13, 14, 15, 16, 17, 18]. The theory and
numerical approaches associated with object near flat interface of layered medium have also
be studied extensively by many researchers [26, 27, 19, 20, 21, 22, 7, 31, 32, 25]. However,
the consideration of the interface to be rough surface is a new challenge, and little work
has been reported. In theory, the standard MoM can be used to solved unknowns both on
object and rough surface [4, 28, 29]. However, the discretization of the rough surface can
significantly increase the computational resourcé compared to calculating the scattering
from object alone, therefore little literature has been reported on the study of scattering
for full scale gemetry.

In this paper, we present a hybrid SPM/MoM technique to calculate the EM scattering
from 3-D conducting object above rough surface. Under the hybrid technique, the Green’s
function and surface variables are expanded in terms of the surface height function on
the mean surface, and the electric integral equations based on the extinction theorem
and the surface boundary conditions are decomposed into different orders. Each order of
equations represents a scattering problem with the same geometry and different equivalent
incident wave, so that it can be solved efficiently by using the dyadic Green’s function in
layered medium. The separation of solution into different orders also helps' us identify and

characterize the individual interaction terms between the object and the rough surface.

II CONFIGURATION AND FORMULATION

Consider an electromagnetic wave E;(7) incident upon a perfectly conducting object with
arbitrary shape S; above a rough surface S, as shown in Fig. 1. The upper space V; is
air which is specified by €; and u,;, the lower space V; is a homogeneous medium and
characterized by €3 and py. The rough surface profile is defined by the surface height

function z = f(7,) with mean surface S, on the z-y plane.




A?

Incident Wave E‘“\ Surface §, Region V,
n,
Conducting
Object
F Rough Surface §
1
S -

Figure 1: Configuration of the problem.

A Electric Field Integral Equations

On the conducting surface, the tangential electric field is zero, thus we can write the integral

equation for electric field as following,

for ¥ € 5,
(B + [[ 28 {iwomCu(r,7) - [u) < o)) + 9V x B 7) - [1al) x B}
v [ ST ) - To()) x 7ol) = 0. "

By Extinction Theorem, we get,
for 7 € V5,

E(F) + / /S S {wmG( ) - [ () x Fu(F)] + 9 x Co(r,7) - [ () x Ba(7)]
tiwi / /S | dSCy(7,7) - Tu(F) = 0, 2)
and for 7 € Vi,

/ /s s’ {iwpaGo(F, ) - [fa() x Hao7)] + V x GolF,7) - [fa(7) x Bo(F)]} =0, (3)

where G, and G, are dyadic Green’s functions in unbounded regions with (e, ;) and

(€2, 112) respectively. The vector 7, (') denotes a local normal pointing from rough surface

3




S, to upper region V;. The vector fp(7) is opposite to 7 (7), thus 2y (7') = ~n (7). E,(7)
and H, () are electric and magnetic fields on the rough surface in region V;, while E,(7)
and Ho(7') are surface fields on rough surface in region V5. J;(7') is the induced surface

current on the object. If region V; is dielectric, the tangential fields are continuous, thus

() % Fi() = () % Fl) = Jealr’), @
- — T (= a (=t T —/__dfil_'—/
1 (7) x E(F) = 2y (F) x Eo(F) = 4S5’ b(7)), : (5)

where a(7,) and b(7,) are new surface variables defined on the mean surface S,, 7; is the

characteristic impedance of upper region and can be written as n; = (1;/€;)"/?, and

dry 1

45" 1+ 0f (', v)/02) + (0f (#',¥)/3y) o
With the new surface variables, we can rewrite the integral equations as
(o + [ dr (6T (7) - a(L) + V x T (7, 7) - B(7L)
+iwp / /5 1 dS'G(7,7) - T (f’)) X (7)) = 0 for 7 € S (7)
Ey(F) + //S dr', {ik,Gy (7,7) - a(F)) + V x Gi (7, 7) - b() | ) ”
iwp [[ ST, 7) - Ti() =0 forFeV,  (8)
//s dF, {m%’;‘@ (7,7) - a(F,) + V x Ga(,7) - 5(1’3_)} =0 for 7€ V. (9)

Theoretical, given the rough surface S, and the perfectly conducting object surface
profiles S;, the unknown surface variables @(7, ), b(7,) and the induced current J,(7') can
be solved from Egs. (7-9). For the special case in which the interface is flat, the surface
variables a(7/,) and b(7,) are in the horizontal plane and the local coordinate 7 can be

replaced by 7 in the dyadic Green'’s functions E—I(F, 7) and ﬁg(f, 7).




B Ezpansion of Green’s Function and Surface Variables

We assume that the rough surface height is small. Therefore the scalar Green’s function
in region a (where & = 1,2) can be expanded in terms of surface height function f(#) on

the mean surface S,,

@R 7) = ga(F 7+ E())
= > 2 TG B ) = D g () (), (10)

1 fzm
moma m=0

in which the following property of the Green’s function has been used

d 0 _

'67911 (7, 7:’) = —5;9& (Ta f,) . (11)
Thus the dyadic Green’s function can be written as

Cutr?) = (T4 V) 0uriF) = 3 S (-0 5 Bair). (12

Consequently, the surface variables and induced current can be written as the series

expansions as following

T.(7) = i T (), (13)
a(,) = i [ () + 2a8(7)), (14)
b7 = > (B + 0] (1)

In Egs. (14) and (15) the separation of the z-components for the surface variables @ and
b allows the unknown surface variables become only the tangential components since the
z-components of the m-th order can be expressed in terms of the tangential components
of lower order (m—1) as we will see below. By the definition of @ and b as in Eqs. (4) and

(5), we get the following identities,

A(FL) - ‘—1(7-'1) =0, (16)
Ay (7)) - b(F) = 0, (17)
where 7 )
oy VIf(TL) + 2
= 9 )+ 1e)




Substituting the series expressions of @ and b as in Egs. (14) and (15) into Eqgs. (16) and
(17) respectively, and considering that df(7,)/0z' and 8f(#,)/0y’ are in the same order

as f(7,), we then get the m-th order z-components of surface variables @ and b in terms

of the (m—1)-th order tangential components,

a{M(7)) = VL f(7,) -afl (7)), 1
9
{b£m>(f1)= LF(7) -5 (). 1)

Substituting the series expression of dyadic Green’s functions as in Eq. (12) and the
surface variables @ and b as in Eqs. (14) and (15) into the integral equations (7-9), we get

the n-th order equations in terms of the surface height function f(7,) as following.

C Then-th Order FEquations

(BP0 + [[ ar (kG 7,7 - a7 + 9 x B (7 7) - BP ()

Fiwpy / [ dS'Gy (7, 7) -7?’(1")) X fio(F) = 0 for 7 € S, (20)
1
90 + [ o (8o 95 )
iy [ / dS'G (7, 7) - TV () = 0 for 7 € V5, (21)

ES(0)+ [, a, {ikzgf-ﬁz (7,7) - a0 (7) + V x Ga(7, 7)) - B (7 )} =0 forFeV,

(22)
where for n =0,
B (7) = Bi(7), (23)
EZ () =0 (24)
forn>1,
B0 = 3 - [ e o

m:

kG (7, 7) - a0 ) + Y x G (7 7)) - B )}

f-Aﬂ




1
- m-—1 am

+ Y oy /dfl[f"] e
{mGl(r,u)-z{ fE) - alTm )]
+V x G, (7,7,) - [Vlf( ARG (25)

(n) _am
By (F Z //d )] z
{zkg;Gz ('r T_L) (n m)( ) + V x 52(77, ,—Jl) _ET—m)(fl)}

1
) 1 = s yym—1 om1
" m=1 m // dr—l— [_f(r_L)] Fam-1

{028, ) -2 9L - af )

Y x By, 7) 2 [V () BT} - )

Comparing the zeroth order (n = 0) integral equations with Eqs. (7-9) for flat interface
(f(7,) = 0), we found that they are the same except adding a superscript (0) to the surface
variables @, and b, and the induced current J;. Therefore, the solutions g’ L , b(o) and 7&0)
for the zeroth order equations should be the same as the ones for Egs. (7-9) in which the
rough surface is considered to be flat. For the higher order equations (n > 1), we found that

they are also in the same form as the zeroth order equations, except for the substitution of

_E; by EEn), and the additional “source” term Ef;‘) in the lower-region. Therefore we only

--need to know how to solve the zeroth order equations, i.e. the equations for object on a

flat interface.

Since the equations of any order are equivalent the ones for flat interface, they can be
rewritten by introducing the dyadic Green’s function for layered media. The advantage for
this approach is avoiding solving surface unknowns c‘z(f) and IS(f) on interface, but only
need to solved the induced current 7§") on the conducting body. Therefore both the

computational time and memory can be dramatically saved.




D  Application to Non-penetrable Rough Surface

Without losing the generality, we consider the rough surface to be non-penetrable. In this

case the zeroth order electric field integral equation (EFIE) can be written as

fio(F) % (ES‘”(f) + EQ () + iwp /S dS'GL (7, 7) .7‘10’(#)) =0 for F€Sy,  (27)
)
and the n-th order (n > 1) EFIE can be written as
7o(7) % ( E&(F) + BO(F) + iwm / dS'CL (7, 7) - 7&"’0*’)) =0 for 7€ S,  (28)
where

—Efn)(ﬂ = Z //dr_L f(m {Zlel(T ) - (n_m)(ﬂ)}

+ Z / dr’ Al (r ‘D] m 1(%%
{zklcl GUAR AR E(CAT) B (29)
and the dyadic Green’s function for conducting interface is
GL(F7) = Gi(F,7) — Cu(F, (T — 233) - ¥) - (T — 233), (30)

where ﬁl is the dyadic Green'’s function in unbounded medium of region V;.
The surface field @; of lower order can be obtained from the lower order scattered field from

all can be calculated

object and equivalent source. For example, the first order surface variable @}
by using the solution of the zeroth order induced current Jg) and the incident and reflected

magnetic fields in absence of the obJect R v
20) = mx (Ful) + () + / a5’ x Tu(r,m) - TOE) . @)

The higher order (n > 2) surface variable a( ™) can be obtained similarly but involving much more

manipulation.
Up to the first order, the total returned field can be written as

Es(7) = E-(7) + Ey(7) + Ec(7) + Ea(7), (32)
where

Ey(f) = iwm /S 1 dS'G (7, 7) - TO(#), (33)

E(n) = B +E @), (39)

Euf) = iwm 5 dS'CL (7, 7) - TV (). (35)




-E-’(l)
} 60 equivalent source

RS ST
surface mean:

Figure 2: Radiation and reflection of the equivalent source.

and
B = -k [[aris()g ﬁ (7) a7,
+iky / dFJ_G’l(F,FJ_) : [V a0 (36)

In Eq. (32), the E.(F) is simply the reflected field from the flat interface in absence of con-
ducting object. In the expression of Ey(7) as in Eq. (33), the induced current 7(10) is obtained
by solving the integral equation (27) with layered Green’s function, therefore the returned field
Ey(7) includes all interactions between object and flat interface. The E(7) as in Eq. (34) is the
sum of radiation field from the “equaivalent source” and its reflection are illustrated in Fig. 2.
The reflected field of the equivalent source can be obtained by writing unbounded dyadic Green’s
function in the integral form as in Appendlx A, thus the radiation ﬁeld of the equivalent.source
E( ) is repressed as the sum of plane waves. By knowing the Fresnel reﬂectlc;n‘goeﬁicxent of
each plane wave component, it is easy to write the reflected field ES ) by multlplylng RTE and
RTM to the reflected TE and TM waves respectively. For non-penetrable surface RT® = —1 and
RTM — 1, thus we find

B =EP ). (37)
Therefore the return field due to the equivalent source is simply
E.() = 2B, (7). (38)

It can also be shown that the returned field E.(7) as in Eq. (38) is the same as the first
order SPM solution for conducting rough surface if we let the induced current 7(0) = 0 when
evaluating the surface field aJ_)(rL) in Eq. (31). Thercfore, we call the return field E.(7) to be

the "incoherent” returned field from rough surface under the influence of the object. The returned

9




field E4(7) is the radiation field of the first order induced current 7(11) excited by the "incoherent”
field E.(7). Since the layered Green's function are used to calculate the induced current :7(11) and
its radiation field, therefore the returned field E4(7) includes all multiple interactions between

object and conducting interface.

IIT Numerical Results

In the numerical simulation, a horizontal conducting cylinder along z-axis with 2.0 in length and
1.0 in diameter is considered. The distance between the bottom of the cylinder and the mean
height of conducting rough surface is 0.1\ so that large interaction between object and rough
surface can be involved. A rough surface with well-known Gaussian power spectrum is used for
the validation with the standard method of moment (MoM). The size of the rough surface is 15.0A
by 15.0\. The deviation and correlation length of the rough surface are 0 = 0.03A and { = 1.0A
respectively. The incident wave E; is tapered and formed as the summation of plane waves with
Gaussian-shaped footprint on the mean surface. The tapered incident wave satisfies Maxwell’s
equations and minimizes the edge effect in numerical calculations. The factor g, which is used to
control the beam width of the tapered wave is g = 3.0, so that the incident electric field density
on the rough surface drops 1/e at |7 | = 3.0\

In the numerical calculation, the radar cross section (RCS) is defined as

2 1Es (6,9)1° .
RCS = hm 4rr 1, 65, 61 ’ (39)

where E, is the maximum magmtude of tapered mcxdent electric ﬁeld on the mean surface S,.
For monostatic {backscattering) RCS, the scattering angles 6 =6; and ¢ = ¢, In the numerical
simulation for bistatic RCS, we let the scattering 6 angle be 40° and vary the azimuthal angle ¢
from 0° to 360°, hence ¢ = 0° is the backscattering direction. For monostatic RCS simulation,
the incident k; vector remains in the z — z plane and the incident angle 8; varies from 0° to 90°.
The plots shown in Fig. 3 and Fig. 4 are bistatic RCSs for individual terms of Eq. (32) for TE
and TM incident waves respectively. The plot labeled as E; is the reflected field of the incident
tapered wave from flat interface in absence of object. A peak of co-pol component of E, appears
in the specular direction ¢ = 180° as expected. The plot labeled as Ej is the returned field as in
Eq. (33). The E, plot is evaluated by using Eq. (34), and the Ey plot is calculated from Eq. (35).
It can be found that most of the energy of the “incoherent” field E. concentrates in the forward
scattering direction. The fields shown in the Ej plot are the scattering from object excited by

fields E; and E,, while the secondary scattering field in the Ey plot is the returned field from the
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object excited by the “incoherent” field E, from the rough surface. We note that the cross-pol
returned fields VH and HV in the backscattering direction are zero in the Ep plot. This is due to
the symmetrical property of the geometry and the incident wave. The secondary returned fields
of cross-pol VH and HV in the plot E; are no longer zero in the backscattering direction due to
the asymmetry of the “incoherent” field E.. The “incoherent” field E, as well as the secondary
returned field Eq4 from the object are both proportional to the surface height function f(7) of
the rough surface. It can be easily checked that both E. and E; become zero when the surface
height function is zero.

" The sum of the four terms E, + E, + E.+ E4 as in Eq. (32) is the total returned field up to the
first order as shown in Fig. 5 and Fig. 6 for TE and TM incident wave respectively. The bistatic
RCS for the total returned field with TE incident wave are compared with standard MoM results.
In the MoM simulation, both the rough surface and the conducting object are discretized and the
surface unknowns are solved together by using the conjugate gradient algorithm. The plots in
the top columns in Fig. 5 and Fig. 6 show the bistatic RCS of the zeroth order solution using the
hybrid technique and the standard MoM solution. Good agreement is found in the comparison of
the results. The co-pol VV of the zeroth order solution matches better than the co-pol HH, since
the TE incident wave may induce unnegligible currents on the front and back edges of the rough
surface, which may add more returns for the MoM result. This edge effect can be minimized if
the TM wave is used as incident as we can see in Fig.6. In the simulations as shown in Fig. 5
and 6, a single rough surface with Gaussian power spectrum is used. The deviation of the surface
height is o = 0.03A and the correlation length is [ = 1.0\. The results also show good agreement
in comparison of the results obtained by hybrid technique with the standard MoM. It is noted
that the curves are no long symmetrical with respect to the incident plane when the surface is
rough. '

The Monte Carlo simulation results with 100 realizations are shown in Fig. 7 and Fig. 8 for TE
and TM incident waves respectively. The rough surfaces with power law spectrum are generated
and they are independent to each other. The power law spectrum function is W (k) = a,/k* which
more closely represents ocean state, where k is the spatial wavenumber of the rough surface and
a, = 0.008/27 which corresponds to the amplitude used for Durden-Vesecky spectrum [35]. The
higher cut-off spatial wavenumber kj, is chosen to be k;, = 2.5k, which corresponds the band width
for 1/5A; spatial resolution of sampling on the rough surface, where &y and A, are electromagnetic

wavenumber and wavelength of incident wave respectively. The lower cut-off spatial wavenumber
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MoM Hybrid
Number of unknowns | 17,252 972
CPU time
single bistatic 1 hr 14 min 5 min
100 realizations 5 days (estimated) 40 min
single monostatic 23 hr 3 hrs 15 min
100 monostatic 3 months (estimated) | 17 hrs

Table 1: Comparison of computational effort for standard MoM and hybrid codes, respec-

tively.

k; is chosen according to the deviation of rough surface height using the following relation

o? = / W (k)d2k = ma, (ki? - ZIZ) . o)

In Fig. 7 and Fig. 8, the deviations of rough surface k1o = 0.1, 0.2, 0.4 correspond to the lower
cut-oftf spatial wavenumbers k; = 0.6131, 0.3137, 0.1578k; respectively. It is shown that the
Monte Carlo simulation converges with respect to the number of realizations, and the averaged
cross-pol RCSs increase with the deviation of rough surface at a wide range of scattering angles.

Fig. 9 and 10 show the Monte Carlo simulation of monostatic (backscattering) RCS for TE and
TM incident waves respectively. Here 100 rough surfaces with power law spectrum and kyjo = 0.4
are used. The backscattering direction varies from § = 0° to § = 90° with 45 steps in between.
The azimuthal angle ¢ remains 0 degree. We note that the cross-pol VH and HV are significant in
the presence of rough surface. Analytically the cross-pols should be zero for the geometry we are
considering when the surface is flat. We note that the non-zero cross-pols for flat surface shown
in the solid lines are produced numerically. The changes of co-pol monostatic RCS due to the
rough surface can be found at some scattering angles. At small grazing angle, the rough surface
effect on co-pol backscattering RCS is not significant.

The computational performance of the hybrid technique and the standard MoM are listed
in Table 1 for the testing cases discussed above, in which the Alpha 21164 machine with 2MB
L2 Cache, 500 MHz clock rate and 1GB RAM are used for the simulation. The CPU time for

monostatic simulations are based on 45 incident angles.
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IV CONCLUSION

This paper presents a hybrid technique of SPM and MoM for EM scattering from object above
rough surface. With the expansion of the Green’s function and surface variables in terms of the
surface height function on the mean surface, the electric field integral equations are decomposed
into different orders. The equations of each order represent the EM scattering problem with the
same object above the mean surface (flat) and different incident field from equivalent source which
can be evaluated by using lower order solutions. The equivalence of the flat surface problem allows
us to use the dyadic Green’s function for layered media, so that we do not need to solve for tan-
gential fields on the rough surface, leaving only unknowns on the conducting object. Comparison
with standard MoM, this hybrid technique demonstrates a dramatic increase in computational
efficiency without losing the accuracy. The separation of return field into the sum of individual
interaction terms allows us to identify the coherent and incoherent returned field, therefore the

rough surface affect can be quantitatively characterized.
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APPENDIX A

The integral representation of dyadic Green’s function in unbounded space is

. = =
G\(7,7) = —‘;:5(2’{)
gz I dhadky gl [(k2)é(kez) + h(kr,)h(kr,)| e =) 2> 2, (an
g—,irf I dkxdkyﬁlz' [é(—klz)é(—ku) + il.(—klz)ié(——klz)] ek (f=7) 5 <
where
S(aky,) = vk (42)
K2+ K2
. 2 VEZ + K2
W(tki,) = F—rtee (ks + k) + 54—, (43)
kv Jk2 + k2 ky
EI = ki + I‘7y37 + k122 (44)
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Ky = k& +kyy— k12 (45)
2 k2 (46)
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Tapered Wave with Dominant Polarization State for All Angles of Incidence
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Abstract

Typical applications of the method of moments (MoM) to rough surface 3-D electromagnetic scattering
require a truncation of the surface considered and call for a tapered incident wave. It is shown how such
wave can be constructed as a superposition of plane waves, avoiding problems near both normal and
grazing incidence and providing clean footprints and clear polarization at all angles of incidence. The
proposed special choice of polarization vectors removes an irregularity at the origin of the wavenumber
space and leads to a least squared error property of the wave. Issues in the application to 3-D scattering
from an object over a rough surface are discussed. Approximate 3-D scalar and vector tapered waves which
can be evaluated without resorting to any numerical integrations are derived and important limitations

to the accuracy and applicability of these approximations are pointed out.
Keywords

Tapered wave, rough surface scattering, method of moments.

I. INTRODUCTION

Recent years have seen major advances in the development of fast MoM solvers for 3-D
scattering of electromagnetic vector waves from rough surfaces [1], [2], (3], [4], [5], (6],
[7], [8]. Efforts are now also being directed towards inclusion of objects situated in the
neighborhood of the rough surface {9], {10], {11}, {12]. Since the problem of scattering
from an object next to a rough surface is computationally complex, 2-D investigations are
also of importance [13], [14], [15], [16], [17], [18], [19], [20]. The 3-D case with or without
objects is aimed at by the present paper.

“The methods employed usually require a truncation of the rough surface because of lim-
ited computing resources which leads to erroneous results due to artificial edge diffraction
when ideal plane waves are used to excite the system. The tapered wave concept is based
on providing an illumination for the numerical simulation that resembles the plane wave
case to be modeled closely at the center of the scattering scenario (including a particu-
lar arbitrary polarization) while its intensity becomes negligibly small upon approaching
the artificially introduced edges of the rough surface. Thus unwanted edge effects due to
the primary incident wave are avoided and the proper normalization of computed scatter-
ing coefficients allows a meaningful comparison with the ideal plane wave case; near-field
quantities such as current distributions induced near the center of the tapered wave are

also expected to be similar.
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Furthesmore, the tapered wave should be constructed in such a way that it satisfies the
Maxwell equations without any approximation. This helps to increase the confidence in
the results obtained from the in general rather complex MoM simulation codes. It should
also be possible to substitute it for a plane wave of arbitrary polar and azimuthal angles
of incidence without loss of polarization and degradation of tapering.

The above requirements led us to revise and modify the tapered wave found in the open

literature which is based on a superposition of plane waves.

II. SUPERPOSITION OF PLANE WAVES

Consider a homogeneous, isotropic medium with real wavenumber k£ and wave impedance
n. Then the following superposition of a 2-D spectrum of plane waves is an exact solution

to the Maxwell equations and represents a wave incident upon the z-y plane from z > 0:

Bi(r) = [ dRpe® 7 y(F,)2(F,) )
H;(r) = / dk, ¢ikePhs2) Yik,) h(k,) 2)
—00 n
where
F=p+z2z2 (3)
Epzi‘:k;c"}'gky (4)
and T '

TP
—i\/k2—-k?  k,>k

The spectrum %) carries the information on the shape of the footprint (defined as the
distribution of the magnitude in the z-y plane) of the incident field and also on the

direction of incidence. It is assumed to be centered about
ki, = Zki+3kiy (6)
= k siné; (Z cos¢; + ¢ sin ¢;) (7
where 0; and ¢; are the polar and azimuthal angles of incidence of the central plane wave

and—pars pro toto—of the tapered wave. In an application the central plane wave would
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coincide with the plar~ wave which was replaced by the tapered wave in the numerical
simulation. Details about the functional dependence of ¢ are given in Section IIL.

The polarization vectors & and & are of the general form

and

The notations
. Zsing; —gcos¢p; k,=0
hE)=4q "~ ’ (10)
E(zky—ykz) k,>0
and
:?:cos¢i+§/sin¢,~ kp=0

. ) k (11)
o @k +gk)+2 k>0

ﬁ(zp) =

are found in similar form in [21], [22]. The chosen definitions for k, = 0 take care of the
special case of a normally incident pure plane wave. k, > k corresponds to evanescent
waves (Section ITT) and the horizontal part of #(k,) is imaginary in this case. It is important
to note the discontinuity of A and ¥ at k, = 0; both unit vectors change sign when crossing
the origin along a straight line in the 75,, plane.

The general superposition integrals (1), (2) were stated similarly in [23], [7]; however,

only normal incidence is considered in what follows there. If e, and e,-in (8), (9) are set

to constants then (1), (2) specializes to the tapered wave used in [1};-[2};-{4], [9); [8], with - -

a particular spectrum 1 briefly discussed in Section III. Problems with this tapered wave
encountered near the grazing incidence (for discussion and references see Section III) and
near the normal incidence (Section IV) motivated our formulation of a different kind of
tapered wave, especially with respect to the polarization vectors.

III. AMPLITUDE SPECTRUM

If the polarization vector € on the right-hand side of (1) is replaced by a scalar constant

then the resulting integral

&(r) = e [ dR,e®7 y(E,) (12)
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is the plane-wave representation of a scalar wave satisfying the scalar Helmholtz equation
and ¥ can be identified with the well-known angular spectrum in scalar diffraction theory
[24], [25]. Thus by obtaining ¢ via 2-D Fourier transformation and making sure that &
and h vary only moderately over the spatial frequency range where 1 is not negligible,
arbitrary footprints of the vector tapered wave can be approximated. [The mentioned
requirement leads to a problem with the tapering in [1], [2], [4], [9], [8] near normal
incidence (Section IV).] The information on the direction of incidence of the tapered wave
is included by shifting 4 in the k,-k, plane to be centered about E,-p. The prescribed
footprint itself is fixed with respect to angle of incidence.

A Gaussian-shaped footprint (Fig.1) whose amplitude at p = g is down to 1/e times

the level at the center is implemented by choosing
2 2

V() = £ el (13)
A pure plane wave is described by %(k,) = 6(k, — ki,), or g — oo in (13). It should
be pointed out that—as is well known from signal theory—among all footprints of given
finite energy and width, the Gaussian leads to the smallest bandwidth (for the appropriate
definition of space and frequency domain widths) which is desirable for synthesis.
Spectral components with k, > k are the amplitudes of plane waves that travel along
the z-y plane and are evanescent for 2 > 0. Their inclusion makes it possible to synthesize
a given footprint near or at grazing incidence.
-- The spectrum in [1], [2], [4], [9], [8] is given as a 2-D Fourier integral that needs to be
evaluated numerically. It cannot be used near grazing incidence where the field distribution
in the z-y plane becomes highly oscillatory. Its continued use is rooted in its close relation
to a scalar tapered wave employed previously [26], [27]. The latter wave, on the other
hand, goes back to a popular incident field introduced by E. I. Thorsos [28] who—for the
2-D case—derived it as an approximation to a summation of plane waves, accurate for
sufficiently small angles of incidence ; (also employed in [29], [30], [15], [31], [32], [33].)
The limitations of the 2-D scalar Thorsos wave at low grazing angles were analyzed and
discussed in [34], [35]. The bound in the resolvability criterion discussed by Ngo and Rino
[36] also becomes significant at low grazing angles. The recommendation for the 3-D vector

case is to start over and simply use the spectrum given by (13) which has the additional
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benefit of being given in closed form. Taking advantage of the functional dependence of
the Gaussian spectrum, an option in the 2-D case is to use path deformation techniques
to speed up the evaluation of the exact expression for the incident field [37]. In the 3-D
case we can at least b_and—limit the integration to a disk about E,, = E,-p within which
the spectrum exhibits a significant magnitude (disk radius a few multiples of 2/g). This
leads to an approximation of the original incident field which satisfies Maxwell’s equations
exactly. The derivation of approximate non-Maxwellian 3-D tapered waves which can be

evaluated without integration is discussed in Section VI.

IV. POLARIZATION

In order to construct a wave that is both reliably tapered and clearly polarized, for

all angles of incidence, we suggest choosing the polarization of the individual plane wave

components as follows:
eh(Ep) =& iz(_Ep) (14)

ev(Ep) =& - (k,) (15)

& =2(kiy) = En h(kip) + Bo 9(F,) (16)
Hence, in dyadic notation
o(F,) = 2 [H(E) h(E) + o(5,) o, )] o
and
h(E,) =& - [6(F,) h(E,) — h(k,) 9(F,)] (18)

The dominant polarization state of the tapered wave is then determined by the choice
of E;, and E, in (16) which describe the (in general elliptical) polarization of the central
plane wave.

Note that with this choice the integrands of (1), (2) are continuous at k, = 0 [as follows
from Section VI, we have in fact analyticity throughout the k,-k, plane excluding the circle
|k,| = k provided an analytic spectrum such as (13) is used; at |k,| = k the integrands

are still continuous] as opposed to the tapered wave in [1], [2], [4], [9], [8]. The latter wave
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is characterized by the choice e,(k,) = Ex and e,(k,) = E., leading to rapidly varying
polarization vectors & and h near Ep = 0. For the near normal incidence case this will
violate the basic assumption of the footprint design technique described in Section IIL.
When examined numerically it is found that the approximation of a prescribed, e.g.,
Gaussian, footprint is poor; the result for normal incidence shows the largest intensity
along a ring in the z-y plane rather than at the center (Fig.2). This effect is also evident
from the following consideration: For a spectrum that satisfies ¥(k,) = ¥(—k,) it can
be shown that, for E, = 0, we have Ei(p, 2) = —Ei(—p, z) with the consequence E;(p =
0,z) = 0 for all z [Fig.2(a)]. Similarly, for Ej, = 0 it is found that 2 x E;(p,z) = —% X
Ei(—p,z) and 2 x E;(p = 0, z) = 0 [Fig. 2(b)]. Other problems are leakage of the intensity
to larger radii than expected (Fig.2) and the non-existence of a clear polarization of the
wave. By using (17), (18) these problems are removed (Fig.3). [The 101 x 101 tapered
wave field values for the results in Fig. 2, 3, 6, and 7 were calculated using a summation
of 128 x 128 plane waves with a 2-D DFT sampling of the k, space. The spectrum after
(1], 2], [4], [9], [8] was calculated using a 2-D FFT algorithm. The horizontal periodicity
of the fields in the space domain was in all cases 30 J, i. e., twice the surface length shown
in the figures, in order to avoid aliasing (Section V).]

The tapered wave with polarization vectors (17), (18) is optimal in a least squared error

sense. Consider a vector field

B =e [ dR,e®P gk, (19)
“o
obtained by multiplying a scalar tapered wave with the constant polarization vector €;
as in (16). This field combines the desirable properties of well defined polarization and
controllable tapering. (Note that |E€;(p, z = 0)|/|&;| corresponds to the prescribed footprint
as discussed in Section III and illustrated in Fig.1.) However, the field defined by (19)
is not a valid electric field because in general V -E; # 0. We can therefore ask for a
permissible wave of form (1) with the same spectrum %) that approximates E; as close as

possible. Defining

On|

(@2) (20)

S(z) = [ dp [Ei(p.2) -
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we find from Parseval’s theorem for 2-D Fourier transforms
e(k,) — | (21)
To minimize S for all z note that

[e®,) ~&[ = [e(F,) & - [A(E) A(R,) + 6F)oE)|[ +[e- kE)]  (@2)

where

k(Ep) =

()

— o 1 . R
(ko) x h(k,) = E (ke +9k, — 2k;) (23)

Hence, (17) yields the optimal E; and the minimum S,, is given by
2 [ 7 Lotk m 2l 20E 2
Sn(z) = 4 / dk, e > (R, [e: - B(E,)] (24)
—00

It is emphasized that we refer to S(z) and S,,(2) as “errors” only in the familiar mathemat-
ical sense. The purpose of comparing with the non-Maxwellian field £;(7) is to uniquely

identify a functional dependence of &(k,) which can be expected to guarantee tapering

-and a dominant polarization state of the total field (both as prescribed). In other words,

£;(7) which is ideal with respect to tapering and polarization is projected into the space
of waves constructed as 2-D superpositions of plane waves, lending its desirable properties
to an exact solution of Maxwell’s equations.

To illustrate the approximation behavior numerically we computed the relative root

mean squared (RMS) €error

s0 / [ s o = 22T (29

g &

where &; is formed using the spectrum (13), for varying tapering parameter g and incidence
angle 6; (in Fig.4 and 5 contour levels decrease monotonically for fixed 8; and increasing
g and are separated by 2dB steps.) The results in Fig. 4 for the tapered wave in [1], [2],
(4], [9], [8] exhibit the previously mentioned problems near normal and grazing incidence.
It is noted that for intermediate angles 6; and larger g the error can be smaller than
1% (—20dB) and that the approximation behavior for horizontally polarized [Fig. 4(a)]

and vertically polarized [Fig.4(b)] plane wave components is similar. For the tapered
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wave compoe<ed according to (17) and (13) and for horizontal polarization [Fig.5(a)] the
error is small everywhere and practically independent of §;. For vertical polarization
[Fig. 5(b)] the error grows larger towards grazing but does not exceed moderate levels.
The fact that approximating a vertically polarized plane wave near grazing incidence is
harder can be understood intuitively by noting that the energy flow of the tapered wave has
to “bend down” in order to form the exponentially space-limited footprint, a requirement
in contradiction with maintaining a vertical polarization state. However, Fig. 5(b) shows
that the optimal approximation finds a reasonable compromise. [For the results shown
in Fig.4 and 5 the RMS error was evaluated using a Gauss-Legendre quadrature over a
surface of size 7 g X 7 g, choosing in both dimensions 5 times the number of sampling points
obtained when rounding 7 g/\ to the nearest integer. 128 x 128 plane waves were summed
to space domain fields with horizontal periodicity of 7g. The tapering parameter g was
changed in steps of A/2 and the angle of incidence 6; in steps of 5°.]
Another important property of the wave based on (17) is found from (18) by noting
that
& h(k,) = h(k,) - & =& [0(K,) h(k,) — h(E,) 9(k,)] - & = 0 (26)

and thus, according to (2), & - H;(T) = 0. The total magnetic field of the tapered wave is
everywhere perpendicular to the electric field of the central plane wave.

It is remarked that this is reminiscent of the tapered wave (given for the case of normal
incidence only) in [23], designed to havé no y component pfwth_é magnetic field. Setting
& = —y¢ in (17), (18) or, more conveniently, in (34), (37) of Section VI and comparing
to (7), (8) in [23] it is found that the waves are different. In particular, the polarization
vectors in [23] are unbounded as |k,| — k while being analytic throughout the .-k, plane
excluding the circle [k,| = &.

The tapered wave given previously by Tran and Maradudin [38] and for the case of
vertical polarization employed in [3], [5], [6]—when generalized to arbitrary azimuthal
angle of incidence and cast into our formalism—turns out to be somewhat related. Their
magnetic polarization vector for horizontal polarization is collinear to (18) when E, = 0.
However, it is normalized to unit length and the magnetic polarization vector for vertical

polarization is then obtained by taking the vector product with l}(fc_,,). It is seen that this
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construction will not lead to an optimal approximation of (19) and thus to a different
wave.

Finally, we point out that our tapered wave has been derived by optimizing the electric
field with respect to an ideal field £;. The magnetic field of the tapered wave then followed
from the familiar relation between the electric and magnetic field of a plane wave (Faraday’s
law). It is clear that in a similar manner we could derive a dual tapered wave which is
obtained by choosing the magnetic polarization vectors h with respect to a non-Maxwellian

field H; and applying Ampere’s law to find the electric field.

V. ISSUES IN THE APPLICATION TO 3-D SCATTERING

The tapered wave introduced in this paper can be used for the simulation of scattering
from randomly rough surfaces with a planar mean surface. In a more complex scenario,
objects are embedded in a layered background with rough interfaces. If the objects are at
least partially situated in the half space where the sources of the incident wave reside it is
important also to pay attention to the distribution of the tapered wave for z > 0.

Fig. 6 and 7 illustrate the cases of oblique and grazing incidence, respectively. Fig.6(a)
shows how the tapered wave forms a slightly converging beam, approximating the pre-
scribed footprint at z = 0 [Fig. 6(b)]. The non-zero intensity in the top-right corner of
Fig.6(a) is due to the periodic nature of the discretized versions of (1), (2) with respect to
p. This aliasing effect, which in the present case would have no effect on the illumination
- of objects-situated relatively close to the surface at z = 0, can be reduced—as usual—by
sampling finer with respect to k,. For footprints where 1(k,) is not given in closed form
as in (13) but is computed by 2-D FFT this is achieved by applying zero padding before
carrying out the transformation. The remarkable fact about Fig. 7 is that the inclusion
and correct treatment of evanescent waves enables synthesis of the prescribed footprint
even for 6; = 90° [Fig. 7(b)]. Aliasing for z > 0 in this case is more severe [Fig. 7(a)].

In typical applications of the tapered wave concept, electromagnetic wave scattering
from a conducting object over a conducting rough surface is simulated and Glisson’s over-
lapping triangular flat vector basis functions [39], [40], [41] for the electric surface current
on both object and rough surface are used in discretizing the electric field integral equa-

tion, applying a Galerkin-type method of moments. We compared the results of such a
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scattering code with those obtained vy the hybrid method described in [10], [11], [12].
The major advantage of this hybrid method is that the decomposition into flat surface
problems with impressed equivalent sources that are determined by lower order solutions
allows introduction of the tensor Green function for layered media. This removes the need
to solve for the surface currents on the rough surface and to truncate its physical dimen-
sions. In the comparison, the same rough surface profile, the same patch model for the
object, and the same tapered incident wave were used for solving the problem with the two
independent codes; reasonable agreement was obtained. Discrepancies, however, occurred
for near-grazing angles 8; = 80...90° where the pure MoM results suffer from edge effects
due to the truncation of the rough surface. While the incident wave can be tapered to fall
off exponentially towards the edges the scattered fields from the object decay only as 1/,
giving rise to problems at very large polar angles where the object acts as a reflector that
directs energy towards the edges. This indicates the increased difficulty of the low grazing
angle rough surface scattering problem when an object is present. In the hybrid method,
the correct behavior of the monostatic HH return at 8; = 90° where in the flat surface case
the boundary condition on the perfectly conducting surface forces a zero is guaranteed.
It should be remarked that, although the utilization of the tapered wave concept for the
method in [10], [11], [12], which when implemented up to and including the first order
yields accurate results for slightly rough surfaces, is not imperative, it is still useful there

because only finite rough surface profiles can be processed.

VI. APPROXIMATE 3-D TAPERED WAVES

A clear advantage of the original 2-D scalar Thorsos wave and a major reason for its
popularity is the avoidance of numerical integrations in the evaluation of the incident field.
The price paid is the non-Maxwellian nature of the approximation which, as reported in
[34], can lead to anomalies in the computed results of simulations that require evaluation
of the incident field not only on the rough surface as, e. g., in object-surface interaction
problems. Also the breakdown of the approximation near grazing incidence causes serious
problems in some applications. Keeping these limitations in mind and analogous to the
derivation of the Thorsos wave, in the 3-D case with the spectrum (13) we can argue, in a

spirit similar to Laplace’s method for the asymptotic expansion of integrals [42], [43], that
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for large g the main contribution to the superposicion of plane waves comes from around

k, = k;,. Using the truncated bivariate Taylor expansion in k., ky

I I kiz K;
kiI ki Lk k? k‘? k2 k121 2 |

where ki, = k cosf;, we can obtain from (12) by carrying out the integrations and sym-

metrizing the result with respect to z and y (without any further approximations)

E(T) ~e; e:T ﬁ exp [—;—2—%:()—2)] (28)

where k; = k;, — 2 k;, and

_ 2 k2 — k2 kie \°
s(T) = 1—55 'k?z z x+—;z

2 k2 — k2 kiy )\’

+(1—'g—2 k?z yZ) (y+—iz)

3 kiz ki ki:c %
+§; yz(m-}-——z) (y+é—y-z> (29)

K3

1z

2i k2 21 1
u(z)=\l(1—E§E§;z) (1—?—;;2) (30)

In deriving (27)—(30), the dispersion relation k2, = k% — k2 — kZ, has been used. As

and

expected, (28) coincides with (12) exactly when z = 0. As g — oo the plane wave case
.is recovered. It is remarked that (28) is not a direct generalizéti‘(v)n of the Thorsos wave
to 3-D because of the different formulation of the superposition integral used as starting
point. However, using the following argument we arrive at a condition for the validity
of (28) that is similar to the one given in the 2-D case [36], [34], [35], in particular the
dependence on (5 — 6;)? near grazing carries over to 3-D: The radius of convergence of the
full Taylor series (27) is limited to k — k;, because of the branch point of the square root
function. Thus

kg (1 —siné;) > 1 (31)
is required for (28) to be an accurate representation of (12). In addition, the error of the
truncated series (27) is multiplied by z with the consequence that the largest |z| considered

should be small relative to g, i.e., g > |2z|max-
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Approximations for the 3-D vector wave case are derived in a similar fashion by addi-

tionally expanding the polarization vectors. Substituting

. 1 (.. L .
h(k,) h(k,) = ﬁ[a:zkg—(acy+yx)kzky+yykf] (32)
P
ST\ AT A PN RS a2
o(k,)0(k,) = ey [mxkx+(a:y+ya:)k,ky+yyky]
ke, s s . k)
+F[(xz+zx)kz+(yz+zy)ky]+z27€3 (33)
into (17), we find
T € [ . . -
e(k,) = -I;—-[mm(k2—k:)—i-yy(kz——kﬁ)-!-zzkﬁ
— (@ +GE) ko by + (E2F 28 ko b+ (2 + 20) Ky (34)

(23). Similarly, with the dyads

() h(E,) = k’“gg (G2 —g9) bk, — 29K2 + 52K
+%(2:ﬁky—2i/kx) (35)
(k) 8(k,) = kkgg (5 —99) ko by + 29K — 2K
+%(;f:z‘ky—-g)§kz) (36)
we obtain from (18)
R(E) = —2 (@9 98)k + (32— 52)k,— (9 — 20) k) (37)

It is observed from (34), (37) that the tensors in (17), (18) are symmetric and anti-
symmetric, respectively. More importantly here, it is evident from (34), (37) that both
g(k,) and h(k,), viewed as functions of the two real variables k; and k,, are analytic
throughout the k,-k, plane excluding the 1-D set of points forming the circle kol = k. (It
is emphasized that the region of analyticity includes k, = 0, c.f., Section IV.) Thus, the

Taylor series

elkip+kp) = D Tmn k'K (38)

m,n=0
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where

_ 1 am+n =
Gmn = 00 [ak;" okr i ”)L,,_z, (39)

converges in the disk |k,| < k — ki,, and similar expressions hold for h(k,). Applying
the approximation (27) to (1) with the spectrum (13), inserting (38), and using twice the
Fourier integral identity (c.f., 3.958.2 in [44])

- T dn 2
/dmx” igr-ar? [ — e
a dq™

. on (n/2] m
/7T t ' 5 (—a) -2
= ' 4a ————————— e n m
" (2a) ¢ = (n—2m)!m! ? (40)

where [n/2] is the integral part of n/2, leads, again without further approximation, to an
expression of the form

—— ik T 1 S\T ad
Ei(r)ze"‘ ——exp{ g 152) ] Z amnpmn (41)

where s(7) and u(z) are as in (29), (30), the @mn are obtained from (34), and pmn(T) is
¢ .iynomial in x, ¥, z up to 2-dependent correction factors that, similar to (30), are unity
for z = 0 or g — oo. It is noted that, different from the scalar case discussed above, (41)
for z = 0 is only an approximation of the superposition of plane waves that we started
out with because of the finite radius of convergence of (38) and the fact that the spectrum
.(13) is not band-limited. The conditions on g for (41) to be a reasonable approximation
are as stated above for the scalar case. We have @go = €; and poo = 1. Thus the lowest-
order electric field approximation following from (41) is the same as what is obtained by
approximating k, in (19) with the help of (27) or multiplying (28) by €;/e;. The pp, of
higher order vanish as g — co. The algebraic details for the pmn of any order (integrating

over k, first) are as follows:

2i 1" 02 gt
) = nl AN et S
peal) = 70| T &
n—2k . ki n—2k—j kiz - j 2 m+j
X Y (m +5)! y+ 2z jy z ———;
= JHn -2k - j)! ki, k. 92 u3(2)
(2] [—g2 2 4 m+j=2¢
—9” u3(2)] l”_ ,
X Z—‘a ¥ (m+ - 200 [“k 2+ uly2) (42)
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where
2i k* — k2,
ui(z) = 1—-55 moe (43)
2
2 u(z)
_ 44
uy(2) 2(2) (44)
2 kigksy kiy
_ Ny 4
wa) = S e z(“ku ) (4)

When choosing the number of terms to be included in (41) one should be aware of the lim-
ited radius of convergence of (38) and the underlying approximation (27) which, however,

has no effect for z = 0. The @, with m + n < 3 are given by

agp = E,’ : (46)
€; r . a N “n oaa
T = p—;;i—z-_—2(a:$—22)kixkiz_(xy‘*'yx)kiykiz
+ (854 28) (K — kL) — (92 + 29) kiz Ky (47)
_ €; [ fn oaa .n . oA
Goy = m{:--—2(yy—zz)kiykiz—(:z:y-i—yx)kizkiz
— (35452 ki ky + (92 +29) (K2 — K2)] (48)
€; r . . A oA oa
an = m'_—($y+y~'17)k?z"($Z+2$)kiy(ki2x+k?z)
— (@2 + 29) kia (K, + K2)] (49)
~ €; A oaa “a o
@0 = 2k2k?z‘{—2($x— 5k — (82 + 2%) ki (K2, + 3KL) ’
— 2+ 29) ky (K* — k2] (50)
€; A n oaa . n oA
T = g [~ 200 2Dk, - @2+ 28 ke (8 - K)
— (G2 + 29) by (k2 + 3K2,)] (51)

Following a similar procedure, approximations for the magnetic field and the dual ta-
pered wave (Section IV) can be derived.
VII. CONCLUSION

We considered the problem of constructing a 3-D tapered wave as a superposition of
plane waves, taking into account both propagating and evanescent waves. The use of the

simple Gaussian plane wave spectrum was recommended in order to avoid problems near
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the grazing incidence. The introduced special choice for the polarization vectors removed
the problems of losing a dominant polarization state and degradation of tapering near
the normal incidence. Mathematically speaking, the proposed polarization vectors are
analytic at the origin of the 2-D wavenumber space. Moreover, the choice of polarization
vectors was shown to lead to an exact solution of the Maxwell equations which is an
optimal approximation of an ideal but non-Maxwellian tapered field that is constructed
by multiplying a scalar tapered wave with a constant polarization vector. The result is
a reliably tapered wave with a dominant polarization state that can be used uniformly
for all angles of incidence. We discussed the application of the proposed tapered wave
in simulating 3-D electromagnetic scattering from a conducting object over a conducting
rough surface. Newly encountered problems near the grazing incidence were attributed
to secondary edge effects which are unrelated to the tapered incident wave but indicate
the difficulty of the low grazing angle rough surface scattering problem when objects are
present. It was pointed out that methods which avoid such edge effects could also benefit
from the utilization of the tapered wave. In some situations it might be desirable to have
an approximate 3-D tapered wave at one’s disposal which does not require a 2-D numerical
integration (summation of plane waves), trading accuracy in satisfying Maxwell’s equations
for computational speed. We presented the derivation of approximations for both the 3-
D scalar and vector case. The expansion of the polarization vectors is based on their
analyticity. The local character of the technique employed forces the breakdown of the

approximations at grazing incidence.
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Fig. 1. Example of a prescribed Gaussian-shaped footprint to be approximated by the vector tapered
wave (g =2A).
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(a) Horizontally polarized plane wave components.

(b) Vertically polarized plane wave components.

Fig. 2.
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(a) Horizontal polarization.
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(b) Vertical polarization.
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Fig. 3. Resulting footprints at normal incidence for the tapered wave introduced in the present paper

and approximating the prescribed footprint of Fig. 1.
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(a) Horizontally polarized components. (b) Vertically polarized components.

Fig. 4. Relative RMS error [dB] at z = 0 for the tapered wave after [1], [2], (4], [9], [8] as compared to a

non-Maxwellian field with prescribed tapering and polarization.
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Fig. 5. Relative RMS error [dB] at z = 0 for the tapered wave introduced in this paper.
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(a) Side view (z = 0).
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(b) Footprint.

Fig. 6. Beam formation of the tapered wave at oblique incidence (§; = 40°, ¢; = 90°, g = 2 A, horizontal

polarization).
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(b) Footprint.

Fig. 7. Beam formation of the tapered wave at grazing incidence (6; = ¢; = 90°, g = 2 A, horizontal

polarization).
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